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Abstract. Waterman’s T-matrix approach is used to derive a simple analytical expression for the extinction
cross-section for randomly-oriented non-spherical grains. Numerical results are presented for randomly-
oriented oblate and prolate spheroids and Chebyshev particles composed of ‘astronomical silicate’. These
results are compared with those for spherical grains, and possible influence of the shape of dust grains on
the value of interstellar extinction is considered. The range of validity of the Rayleigh approximation for
computing extinction efficiency factors for randomly-oriented non-spherical grains is discussed.

1. Introduction

As is well known (see, e.g., Martin, 1978), the extinction of light transmitted by a slab
of interstellar dust grains of the geometrical thickness z is given by the formula

1,(2) = [;(0) exp[ - 7,(2)] (1)

where I, is the intensity of light; A, the wavelength; t,(z), the optical thickness of the
slab, given by

z

1,(2) = J dz’ ny(z") (Cou(2')) =y {Cou> 25 @
0

where n, is the number density of dust particles, { CZ,, > is the extinction cross-section

averaged over size, shape, refractive index, and orientation distributions of non-spherical
(generally speaking) grains. The corresponding extinction in magnitude is

A, ~ 1.0867,. (3)

The size of interstellar grains is typically estimated to range from approximately
several thousands to approximately several tenths of micrometer (see, e.g., Mathis et al.,
1977; Draine and Lee, 1984; Lee and Draine, 1985; Voshchinnikov et al., 1986). Thus
in making a comparison between observations of extinction and theoretical models, one
is to be able to compute theoretically the value of (CZ,> for i/a = 1, where a is a
characteristic size of an interstellar grain. Such computations are usually made for two
very simple (and, therefore, very idealized) grain models, the first one being homo-
geneous or layered spheres (e.g., Aannestad, 1975; Mathis et al., 1977), and the second
one being homogeneous or layered infinite cylinders (e.g., Greenberg and Shah, 1966;
Hong and Greenberg, 1980; Aannestad and Greenberg, 1983; Voshchinnikov et al.,
1986). Such choice of grain shapes is conditioned by great difficulties in treating the
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problem of scattering by an assembly of particles of more realistic shape. The first
difficulty arises in calculating scattering properties of a single non-spherical particle,
especially in the so-called resonance region (4 ~ a). The second problem arises when
the scattering properties are to be averaged over grain orientations.

Several approaches have been developed to compute scattering properties of a single
non-spherical particle in the resonance region. We mention here spheroidal function
expansions for homogeneous and layered spheroids (Oguchi, 1973; Asano and
Yamamoto, 1975; Onaka, 1980; Farafonov, 1983), the discrete-dipole approximation
(Purcell and Pennypacker, 1973; Kattawar and Humphreys, 1980; Draine, 1988),
Fredholm integral equation method (Holt etal, 1978), and the T-matrix method
(Waterman, 1971; Strom, 1975; Barber and Yeh, 1975; Varadan and Varadan, 1980)
(see also reviews by Oguchi, 1981; Holt, 1982; Mon, 1982; Barber and Massoudi,
1982).

Among the above-mentioned methods, the T-matrix approach seems to be the most
efficient and to be used in a greater range of scattering problems. Computations were
reported for homogeneous and layered particles of different shape: oblate and prolate
spheroids (up to very high asphericities), finite cylinders, Chebyshev particles, and
particles with axisymmetric surface perturbations (Warner and Hizal, 1976; Bringi and
Seliga, 1977; Wang and Barber, 1979; Varadan and Varadan, 1980; Lakhtakia et al.,
1984; Geller et al., 1985; Wiscombe and Mugnai, 1986). However, the main reason for
selecting the T-matrix approach is that it seems to be the most convenient when the
averaging over grain orientations is required (Varadan, 1980).

In the present paper, the T-matrix method is used to compute the extinction cross-
section for randomly-oriented non-spherical grains. We do not try here to develop a
complete model of interstellar dust —i.e., to determine possible size, shape, and refractive
index of dust grains. Our aim is to describe a method for the calculation of the averaged
extinction cross-section for sufficiently realistic grain model, to present some numerical
results, and to discuss qualitatively the way in which the shape of dust particles can
influence the value of interstellar extinction.

It should be emphasized that we essentially use the assumption that dust grains are
randomly oriented. This assumption is not valid when interstellar extinction is accom-
panied by interstellar polarization. Nevertheless, the model of randomly-oriented non-
spherical grains is undoubtedly more realistic than the model of spherical grains, and
can be used when interstellar polarization is absent or small, or when observations of
interstellar extinction were not accompanied by appropriate observations of interstellar
polarization.

We note also that we discuss here only the averaging of the extinction cross-section
over grain orientations. The size and refractive index distributions can be taken into
account by means of straightforward averaging procedures.

The plan of our paper is as follows. In Section 2 we shall derive very simple analytical
expression for the extinction cross-section averaged over grain orientations
(Equation (39)). In Section 3 some illustrative numerical results will be presented for
monodisperse non-spherical grains composed of ‘astronomical silicate’ (Draine and
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Lee, 1984), and effects of grain non-sphericity will be briefly considered. In Section 4
the range of validity of the Rayleigh approximation for the computation of the extinction
efficiency factor for randomly-oriented non-spherical grains will be discussed. Finally,
the main results of the paper will be summarized.

2. Extinction Cross-Section for Randomly-Oriented Non-Spherical Grains

According to the optical theorem (see, e.g., Bohren and Huffman, 1983) we can write
2n
(Cext? = m Im[{Fpom,n)} + {(F,,(m,n)}] 4)

(the index 4 is omitted for the sake of simplicity). Here k = 27t/4, Fyq and F,,, are the
elements of the (2 x 2) amplitude-scattering matrix. This matrix relates 6- and
¢@-components of the electric fields of the incident plane wave (index i) and the
scattered-spherical wave (index s) in a spherical-coordinate system having its origin
inside the scattering grain:

[Eé] _ev F(n,,n,) [?J kr>1; )

5
Ew r @

where the unit vectors n; and n, are directed towards the propagation directions of
incident and scattered light. Note that the time factor e ~‘** is assumed throughout this
paper.

By use of the T-matrix approach (Waterman, 1971) we expand the incident and
scattered fields in vector-spherical functions

E®=73Y 3 [a,RgM,,(kr) + b,,RgN,,(kr)], ©)

n=1 m= —n

=3 Y [PmMynkn) + guNkr)] %)

n=1 m=—n

where the vector-spherical functions are:

M, (kr) = (= 1y"d,h" (kr)C,,.(0) exp(imp), (8)

N, (ke) = (~ 1y"d, {”—(”k+ D 10 kryP,,(0) +

14
+ kl [krh'D (kr)]’ an(g)} exp(imo), 9
¥
where
~ d im

_ s n N o n 0
B,.0)=0 0 dg(0) + ¢ e dg,.(0), (10)

~im . d
C,.(0)=0 " 4 (0)— ¢ — dz,(0), 11
mn() Sin0 0() (de O() ( )
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P,.(0) = 1d;,(0), (12)

dn = [ﬂ._]lﬂ, (13)
4nn(n + 1)
dr,.@)=[n+m)!(n-m!@n+m)(n-m)]'?x

(cos30)"+™ +% (sinz0)> ~m—m' ~
JHe=m=Pta—m' = )lm+m +))!
(14)

X Z (=1y+n—m

The summation over j in Equation (14) is such that j = 0 and all the factorials in the
summation are non-negative. The function d7,,. can also be expressed as

dr (0) = e [M]/ ( 9)" N
m ' (s+a)!(s+b)! 2

0 b
X (cos 5) P9 (cosh), (15)

where P ® is a Jacobi polynomial,

a=|m-m'|, b=\m+m'|, s=n-(a+b)2
and
{1 for m'=m,
emm'= ,
(-1y"—™ for m' <m.

The expressions for RgM,,,,, and RgN, ,, can be obtained from Equations (8) and (9) by
replacing spherical Hankel functions A{’ by spherical Bessel functions j,,.

The relation between scattered field coefficients and exciting field coefficients is linear,
and given by the T-matrix

Prn = Z Z [Trltltm'n’am'n’ + Tr:tftm’n'bm’n’] ’ (16)
n=1m=-n'

Drnn = Z Z [Trfz:im'n’am'n’ + Tr%tim'n'bm’n’] . (17)
n=1 m=—-n'

By use of the compact notation we can also write

[:] -t m ) [: i] [:] (18)

The elements of the T-matrix are completely defined by size, shape, and refractive index
of the scatterer and by its orientation with respect to the chosen reference frame. The
general formulae for computing the T-matrix elements are given by Waterman (1971)
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(see also Barber and Yeh, 1975). When the scatterer is axisymmetric, and the z-axis of
the spherical-coordinate system is chosen to be the axis of symmetry, the formulae
become much simpler (see, e.g., Tsang etal., 1984). Detailed description of the
computational procedure for this particular case is given by Wiscombe and Mugnai
(1986).

For the plane incident wave

E(r) = E,exp(ik;r), (19)
the expansion coefficients are

a,,, = 4n(-1)"i"d,Ck, (6)E exp(—img,) , (20)

b,,, = 4n(-1y"i"~'d B* (6,)E, exp (- img,), 21
where the asterisk denotes the conjugate complex value. By use of the large argument

approximation for spherical Hankel functions

_ N\n pikr
Ay AL S 22)

ikr

and taking into account Equations (5)-(12), (20), and (21) we can obtain an expression
of the amplitude-scattering matrix F in terms of the T-matrix elements (see, e.g., Tsang
et al., 1984). In dyadic notation we have

471' [ee] oo n n’ L .
F(0,, ¢, 0,, ) = % )IED) > DI i G U A
n=1 n=1 m=—-n m=-n'

x d,d, exp[i(me, - m'@,)] X
X {[Tll ’Cmn(es) + T21 len(es)]C:l'n'(gz) +

+ [Tr:tflm’n’cmn(gs) + Triim'n'ian(Hs)]Brj;’n‘(oi)/i} . (23)

To use Equations (4) and (23) for computing the averaged extinction cross-section
we are to average the T-matrix elements over the uniform orientation distribution.
Scatterer orientation with respect to the laboratory frame of the dust cloud we shall
define by the Eulerian angles of rotation a, §, and y which transform the laboratory frame
B into the natural frame of the scatterer 4 (Varshalovich et al., 1975). In that way we
can write

2n 4 2n
. 1 .
<Trl1]1nm'n’ > = 8 2 J da J dﬂ SinﬂJ‘ d'}) Trlzmm’n’(B; &, B’ V) ’
T
0 0 0

24
ij=12. 24

By use of the formula

an(kr’ BA’ (pA) = ,Z D}':I'm(a’ ﬁ’ Y)Mm’n(kr’ GB’ q,B) s (25)
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and similar relations for the functions N,,,, RgM,,,, and RgN,,,, and taking into
account Equations (6), (7), (16), and (17), we have (Varadan, 1980)

n

Trirj;nm’n’(B; a, ﬂ’ ’))) = Z Z , Dr’:vrq(a’ B’ V) X

X DA (o By DT e (A) 5 (26)

where the Wigner D-functions are
D}, B, 7)) = e~ "*dy,, (B)e™ ™7, 27

and T(A) is the T-matrix calculated in the natural frame. If we insert Equation (26) into
Equation (24) and by use of the orthogonality relation (Varshalovich et al., 1975)

2n 2n

J da J dg Sinﬁj dy D}, (% B, Y)D ot (2, B 7) =
0 0

0

2
= 87[ nn’ 5mm’ 5m|m2 ’ (28)
2n + 1
where 9§, is the Kronecker delta, we obtain
. 1 ” -
<Trl{1nm'n'> = 5mm'énn' Z Tr’{unmnt(A) ’ l’j = 1’ 2 . (29)
2n + 1 my=—n

Note that averaged T9-matrices are diagonal, and their elements do not depend upon
the indices m and m’. Furthermore, it follows from Equation (29) that the sum of the
diagonal elements of the TY(4)-matrix is a value invariant with respect to the choice of
the natural frame of the scatterer.

By use of the addition theorem (Varshalovich et al., 1975)

X A (0045, (0,) = d7, (0, - 6,), (30)

m' = —n

and the formulae

Mgz (0) = L /n(n+ 1) [dD,(0) + d7 1, (0)], (31)
sin 0

5“(—) a5 (0) = & nln + 1) [d}n(8) - d” 1, (0)] (32)
43,(9) =1 /n(n+ 1), (33)

sin 6 0=0
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diedn =Ll ), (34)
e (0) = (=1y"=""d"” . .(0), (35)
we find that
i [— dz (0)] Ln(n + 1), (36)
m= sm
n d 2 .
,,,:ZA,, [@ d(?m(e)] =on(n+1), (37)
i T g (0) 4 dg,.(0) =0 (38)
me —n smB om do o ’

Finally, by use of Equation (4) and inserting Equations (29), (36)-(38) into
Equation (23), we have

(oo}
(Cext? = —— R ) Z [T,iimn(A) + Tommn(A)] - (39)
n=1 m= —
Thus, for computing the averaged extinction cross-section it is sufficient to calculate the
T-matrix for any single direction of scatterer orientation with respect to the natural frame

and to sum its diagonal elements.
If the scattering particle is axisymmetric, and the z-axis of the natural frame is the axis

of rotation, we have
mnm n’ (A) = mnn (A) mm’ > —mnn (A) = (—— 1)1+JTrl'rImn (A) .

Therefore, Equations (29) and (39) may be rewritten as

<Tanm’n’> = # 51]' 6mm'énn’ i (2 - 5m|0)T'r!r]tlnn([i) s (40)
2n+ 1 m;=0
(Cod=~ZRe S 3 Q-0 [ThM+ TR,@]. @)

n=1 m=0

Note that for spherical grains

Tr:;%m (A) = Tr?z}m (A) =0 s Trl::m (A) = - 5nn’bn ’ Tr%rfm (A) = - 5nn q
where a, and b,, are Mie coefficients (see, e.g., Bohren and Huffman, 1983). Thus we
can obtain from Equation (41) the well-known relation

ext ext

(CMiey CM,e=i Re Y (n+1)(a,+b,). (42)

n=1
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3. Numerical Results and Discussion

In the present paper we do not aim to study any more or less representative selection
of grain shapes, sizes, and refractive indices. Therefore, only some illustrative numerical
results are given here and several qualitative conclusions are made on the effect of
asphericity on the extinction. Because we are interested mainly in astrophysical
applications, we present numerical results for grains composed of ‘astronomical silicate’
(Draine and Lee, 1984). Furthermore, sufficiently simple grain shapes are considered:
prolate and oblate spheroids, and Chebyshev particles.

The surface of spheroids in a spherical-coordinate system is governed by the equation

r(6, @) = a (sin®>0 + d?cos?0)~?, d=alb, (43)
where b is the rotational semi-axis and a is the horizontal semi-axis of the spheroid. The

surface of Chebyshev particles is governed by the equation (Mugnai and Wiscombe,
1980)

r(0, ¢) = ro(1 + E cosnf). (44)
Varying the parameter d we can model grain shapes ranging from needles (d < 1) to
disks (d> 1). If we set n > 1 and | E| < 1, we can model small-scale surface roughness
of nearly spherically-shaped particles.

For convenience we shall tabulate the extinction efficiency factor Q,,, instead of the
extinction cross-section. We define

Qext = {Cex 2 /(n1Z,), (45)
where r,, is the radius of the equal-volume sphere. For spheroids

r,=ad" 3, (46)
for Chebyshev particles (Mugnai and Wiscombe, 1980)

4n*> -2 3E(l + E%/4 E?3 13
rev=ro|:l+§E2 n=2 SEU+ETH ] @)
4n? -1 n? -1 409n% - 1)
for n even, and
3 4n? - 2:|”3
ro=ro|l+= E? (48)
0[ 2 4An2-1

for n odd.

Spectral values of the refractive index for the so-called ‘astronomical silicate’ were
computed by Draine and Lee (1984). Then Draine (1985, 1987) has tabulated optical
properties of monodisperse spherical ‘astronomical silicate’ grains, including the
values of the extinction efficiency factor.

In Tables I and II analogous computational results are given for monodisperse
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TABLE 1

Extinction efficiency factors for monodisperse spheres and randomly-oriented Chebyshev particles
composed of ‘astronomical silicate’

A, pm Rem, Imm, Sphere T (—0.05) T¢ (0.05)
0.2 1.925 0.05316 2.81 2.82 2.82
0.22 1.863 0.03058 2.81 2.85 2.84
0.25 1.803 0.02773 2.06 2.13 2.15
0.3 1.762 0.02844 2.44 2.45 2.45
0.4 1.732 0.02904 4.49 4.48 4.48
0.55 1.719 0.02936 3.82 3.81 3.81
0.7 1.715 0.02967 2.86 2.86 2.86
1.0 1.714 0.03029 1.03 1.02 1.02
1.5 1.713 0.03150 283-1 2.84-1 2.84-1
2.0 1.710 0.03314 1.13-1 1.14-1 1.14-1
3.0 1.698 0.03721 428-2 429-2 429-2
4.0 1.676 0.04106 2.78-2 2.78-2 2.78-2
6.0 1.573 0.05049 211-2 2.11-2 2.11-2
8.0 1.211 0.1709 6.55-2 6.55-2 6.55-2
10.0 1.393 0.9237 243-1 243-1 243-1
15.0 1.823 0.4883 6.21-2 6.22-2 6.22-2
20.0 1.892 1.054 8.43-2 845-2 8.45-2
25.0 2.256 1.128 5.16-2 5.18-2 5.18-2
30.0 2.497 1.109 3.50-2 3.50-2 3.50-2
50.0 3.016 0.9187 1.23-2 1.23-2 1.23-2
70.0 3.235 0.7064 6.01-3 6.01-3 6.01-3
TABLE 11
Same as Table I, but for randomly-oriented spheroids
A, pm Oblate Prolate
d=3 d=2 d=15 d=1/15 d=3 d=3
0.2 3.09 2.62 2.71 2.83 2.84 2.76
0.22 3.32 2.66 2.63 2.62 2.49 2.58
0.25 4.06 294 2.38 2.25 2.55 3.28
0.3 4.09 3.31 2.90 2.98 341 4.26
0.4 4.05 4.10 4.24 4.21 4.22 4.46
0.55 3.49 3.72 3.79 3.71 3.62 3.61
0.7 2.37 2.59 2.76 2719 2.67 2.42
1.0 1.05 1.04 1.03 1.03 1.01 9.70-1
1.5 3.08-1 296-1 2.88-1 2.88-1 294-1 298-1
2.0 1.28-1 1.20-1 1.16-1 1.16-1 1.19-1 1.24-1
3.0 493-2 4.56-2 438-2 437-2 453-2 479-2
4.0 320-2 296-2 2.84-2 2.84-2 2.94-2 3.11-2
6.0 235-2 221-2 2.14-2 2.14-2 2.19-2 329-2
8.0 6.67-2 6.60 — 2 6.57-2 6.56 -2 6.59 -2 6.62 -2
10.0 2.70-1 2.55-1 247-1 2461 2.50-1 2.53-1
15.0 7.64-2 6.81-2 6.42-2 6.41-2 6.76 -2 7.40-2
20.0 1.16 -1 9.76 -2 8.89-2 8.88-2 9.68 -2 1.11-1
25.0 7.87-2 6.26 -2 5.54-2 5.56 -2 6.32-2 791-2
30.0 5.57-2 433-2 3.79-2 3.80-2 441-2 571-2
50.0 207-2 1.56 -2 1.34-2 1.36 -2 1.61-2 225-2

70.0 1.02-2 7.64-2 6.56-3 6.62-3 793-3 1.13-2
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randomly-oriented non-spherical grains. All the computations were made for
r,, = 0.2 um. For Chebyshev particles the notation T,,(E ) is used. For spheroidal grains
the parameter d is indicated.

It is seen from Table I that small-scale surface roughness of a nearly-spherical particle
cannot influence significantly the value of the extinction efficiency factor. Thus in
practical computations such particles can be replaced by equal-volume spheres, and
then the Mie theory can be used provided that several percent computational accuracy
is enough. This conclusion is also corroborated by the numerical data given by
Wiscombe and Mugnai (1986) for the refractive index m, = 1.5 + 0.02i.

On the other hand, extinction efficiency factors for oblate and prolate spheroids
(especially for highly aspherical particles) can differ significantly from those for spherical
grians both in the resonance region (1 ~r,,) and in the Rayleigh region (1> r,,) (see
Table II). The same conclusion can be drawn from computations of Asano and Sato
(1980) for the refractive indices m, = 1.33 and m, = 1.33 + 0.05i.

It should be noted that for A > r,, the extinction efficiency factor for non-spherical
grain is always greater than that for the equal-volume spherical particle (see also Chylek
et al., 1981). Furthermore, in the Rayleigh region there is only a small difference between
oblate and prolate spheroids characterizing by the parameters d,,,, and d,,, = 1/d,,,
respectively. Thus in practice it is very difficult to determine confidently the actual grain
shape using only the results of photometric observations.

4. The Range of Validity of the Rayleigh Approximation

If the size of scattering grains is much smaller than the wavelength, the Rayleigh
approximation is frequently used (see, e.g., van de Hulst, 1957; Bohren and Huffman,
1983; Kleinman and Senior, 1986). However, the range of validity of the Rayleigh
approximation for computing the extinction efficiency factor was studied by means of
accurate numerical calculations only for spherical scatterers (see, e.g., Wiscombe, 1980;
Ku and Felske, 1984, and references given herein).

In Tables III and IV two kinds of numerical data for prolate spheroids are compared,
the first one being the result of the 7T-matrix computations, and the second one being
the result of using the formulae (Dolginov et al., 1979; Bohren and Huffman, 1983)

Qext = Qabs + Qsca ’ (49)
Qabs = %k Im (zax + az)/(nrezv) ’ (50)
k4
Qsca=— [2|ax|2+ |az|2]/(7"3u)§ (51)
187
where
2
-1
a,=3nr} _ M T i=xz. (52)

"1+ Lm2-1)"
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TABLE III

11

Extinction efficiency factors for randomly-oriented prolate spheroids. T — T-matrix calculations, R —

Rayleigh approximation. The refractive index is m, = 2.5 + i.

f d=1 d=3 d=1 d=1
T R T R T R T R
10 1.14 717-1 1.34 893-1 1.56 1.16 1.73 1.56
15 4.85-1 3.70-1 598-1 4.60-1 7.58-1 5.96-1 9.66-1 8.05-1
20 3.04-1 257-1 3.77-1 321-1 485-1 4.15-1 6.41-1 5.61-1
30 1.78 -1 1.65-1 222-1 205-1 2.87-1 2.66-1 385-1 3.59-1
40 1.28 -1 1.22-1 1.59-1 1.53-1 2.06-1 197-1 2.78-1 267-1
50 1.00-1 9.76-2 1.25-1 1.22-1 1.62-1 1.57-1 219-1 213-1
75 6.57-2 649-2 8.19-2 8.08-2 1.06 -1 1.05-1 143-1 141-1
100 490-2 486-2 6.10-2 6.06-2 790-2 7.84-2 1.07-1 1.06 -1
150 325-2  324-2 405-2 4.04-2 524-2 522-2 7.08-2 7.06-2
200 243-2 243-2 3.03-2  3.03-2 392-2  392-2 531-2  530-2
TABLE IV
Same as Table III, but for the refractive index m, = 1.32 + 0.05i
f d=1 d=1 d=1 d=1
T R T R T R T R
4 555-1 8.33-1 5.42-1 8.45-1 519-1 8.57-1 476 -1 8.72-1
5 3.60-1 4.10-1 3.50-1 4.16-1 336-1 423-1 3.10-1 4.30-1
8 141-1 1.30-1 140-1 1.32-1 1.38-1 1.34-1 133-1 1.36-1
10 954-2 8.78-2 9.58-2 891-2 9.56-2 9.05-2 941-2 920-2
15 534-2 507-2 540-2 5.14-2 545-2 522-2 548-2 531-2
20 378-2 3.66-2 383-2 3.71-2 388-2 3.77-2 392-2 3.83-2
30 243-2 239-2 246-2 242-2 249-2 246-2 253-2  250-2
40 1.80-2 1.78-2 1.82-2 1.81-2 1.85-2 1.84-2 1.88-2 1.87-2
50 143-2 142-2 145-2  145-2 147-2 147-2 1.50-2 149-2
For prolate spheroids (d < 1),
1-w? I+w
L, = -2w], w?=1-d>. (53)
2w3 1-w
For oblate spheroids (d > 1),
1+ w?
L,= (w—-tan"'w), w?=d?-1. (54)
w
Also we have
L,=(1-L)2. (55)
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For the sake of simplicity we have used wavelength-independent values of the
refractive index. The value m, = 2.5 + i roughly corresponds to ‘astronomical silicate’
at A ~ 25 um (Draine, 1987). The value m, = 1.32 + 0.05i is close to that for H,O ice
at A ~ 7 um (Warren, 1984). The ratio A/r,, is denoted by f.

By use of this computational data and those for oblate spheroids, as well as numerical
results for other values of the refractive index, we have drawn the following conclusions.

(i) The range of validity of the Rayleigh approximation is highly dependent upon the
value of the refractive index. The same conclusion for the case of spherical scatterers
was made earlier by many authors (see Ku and Felske, 1984, and references given
herein).

(ii) If in Equation (49) Q... > O..., then the range of validity of the Rayleigh
approximation is practically independent upon the scatterer asphericity and is com-
pletely defined by the parameter r,,. Thus, calculating extinction efficiencies for
randomly-oriented non-spherical grains we can use the criteria found for spherical
particles (e.g., 1% accuracy criteria of Ku and Felske, 1984) inserting the equal-volume
sphere radius r,, instead of the sphere radius r.

5. Summary

In the present paper the T-matrix approach of Waterman (1971) was used to derive very
simple analytical expression for the extinction cross-section for randomly-oriented
particles of arbitrary shape (Equation (39)). It was shown that the averaging of the
extinction cross-section over the uniform orientation distribution of non-spherical grains
is equivalent to the summation of the diagonal elements of the T-matrix calculated for
any single orientation of the grain with respect to the natural reference frame.

Equation (39) was used to compute the extinction efficiency factors for randomly-
oriented prolate and oblate spheroids and Chebyshev particles composed of
‘astronomical silicate’. It was found that small-scale surface roughnes of nearly
spherically-shaped particles cannot influence the extinction significantly, whereas the
extinction efficiency factor for a highly aspherical grain can differ appreciably from that
for the equal-volume spherical scatterer both in the resonance and Rayleigh regions.

The range of validity of the Rayleigh approximation in computing the extinction
efficiency for absorbing randomly-oriented non-spherical grains was studied. It was
shown that the range is independent upon the asphericity of a scatterer and is completely
defined by the equal-volume sphere radius.
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